An Efficient Shift-Invariant Model for Polyphonic Music Transcription
نویسندگان
چکیده
In this paper, we propose an efficient model for automatic transcription of polyphonic music. The model extends the shift-invariant probabilistic latent component analysis method and uses pre-extracted and pre-shifted note templates from multiple instruments. Thus, the proposed system can efficiently transcribe polyphonic music, while taking into account tuning deviations and frequency modulations. Additional system improvements utilising massive parallel computations with GPUs result in a system performing much faster than real-time. Experimental results using several datasets show that the proposed system can successfully transcribe polyphonic music, outperforming several state-of-the-art approaches, and is over 140 times faster compared to a standard shiftinvariant transcription model.
منابع مشابه
Multiple-instrument polyphonic music transcription using a temporally constrained shift-invariant model.
A method for automatic transcription of polyphonic music is proposed in this work that models the temporal evolution of musical tones. The model extends the shift-invariant probabilistic latent component analysis method by supporting the use of spectral templates that correspond to sound states such as attack, sustain, and decay. The order of these templates is controlled using hidden Markov mo...
متن کاملCity Research Online IMPROVING INSTRUMENT RECOGNITION IN POLYPHONIC MUSIC THROUGH SYSTEM INTEGRATION
A method is proposed for instrument recognition in polyphonic music which combines two independent detector systems. A polyphonic musical instrument recognition system using a missing feature approach and an automatic music transcription system based on shift invariant probabilistic latent component analysis that includes instrument assignment. We propose a method to integrate the two systems b...
متن کاملAutomatic Transcription of Polyphonic Music Exploiting Temporal Evolution
Automatic music transcription is the process of converting an audio recording into a symbolic representation using musical notation. It has numerous applications in music information retrieval, computational musicology, and the creation of interactive systems. Even for expert musicians, transcribing polyphonic pieces of music is not a trivial task, and while the problem of automatic pitch estim...
متن کاملSparse representations of polyphonic music
We consider two approaches for sparse decomposition of polyphonic music: a timedomain approach based on shift-invariant waveforms, and a frequency-domain approach based on phase-invariant power spectra. When trained on an example of a MIDI-controlled acoustic piano recording, both methods produce dictionary vectors or sets of vectors which represent underlying notes, and produce component activ...
متن کاملMultiple-instrument Polyphonic Music Transcription Using a Convolutive Probabilistic Model
In this paper, a method for automatic transcription of music signals using a convolutive probabilistic model is proposed, by extending the shift-invariant Probabilistic Latent Component Analysis method. Several note templates from multiple orchestral instruments are extracted from monophonic recordings and are used for training the transcription system. By incorporating shift-invariance into th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013